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I. INTRODUCTION

When designing an artillery shell, it is necessary to develop a
vehicle which will fly with stability under a wide variety of aero-
dynamic conditions. A range of propellant charges may be used giving
the shell launch velocities covering a spectrum from subsonic to super-
sonic. The shell will also slow in flight, particularly near the apex
of its trajectory. It is, therefore, important that the shell fly with
stability in subsonic, transonic, and supersonic flight regimes. 

-

Difficulties are often experienced by projectiles at transonic
velocities. Aerodynamic properties such as drag and the pitching
moment, which is critical to stability, will reach peak values at some
transonic Mach number. This peak can form in a Mach number range which
may be limited, for example, between 92 < M < .94. The sharpness of
this critical behavior as well as the value of the critical Mach numt.er
are very sensitive to body geometry. A slight change in boattail
length may make the difference between a successful shell and one ~.nose
behavior is unpredictable.

Aerodynamic range and wind tunnel testing are difficult and
expensive, particularly at transonic velocities. Therefore, it is of
great importance for artillery projectile design to develop a computa-
tional capability which can provide guidance in the design of shell
configurations and reduce aerodynamic testing requirements. Techniques
have been established1 and computers are now available which should
make possible the development of useful computational design tools,
particularly for the limited and seemingly simple geometries found in
artillery projectile shapes. The techniques presented here will treat
inviscid transonic flow over projectiles allowing the computation of
lift and pitching moment. Magnus effects will be included in following
work when viscous effects are included.

The simplicity of the shape of an artillery shell is somewhat
deceptive. There are sharp corners and other discontinuities in the
surface slope and curvature. These discontinuities create strong shock
patterns at transonic velocities as may be seen in the shadowgraph
presented in Figure 1. An understanding of these shock patterns is
critical to an understanding of the aerodynamics of the shell. The
shock on the windward surface of the boattail is a great deal farther
aft than the shock on the lee surface. This pattern generates a strong
upward force on the boattail tending to overturn the shell and thus
generates a large pitching moment.

1. F. R. Bailey and W. F. Ballhaua , “Comparisons of Computed and
Experimenta l Pressure s for Transonic Flow About 180 lated Wings and
Wing Fuse Zage Configurations ,” NASA SP-347 , Vol. 2, March 1975 ,
pp.  1213—1226.
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The resolution of the shock patterns associated with flow over
the corners, makes necessary the application of very fine grids in the
numerical procedures used to obtain predictions of the flow over the
shell. The necessity of making three-dimensional computations with
these fine grids leads to the problem of a large computer storage
requirement and to the problem of a long run time. Grids on the order
of ten thousand total points have been needed in two dimensions to suit-
ably resolve the shock patterns and corner flows associated with shell.
Computer time for such a solution based on a line relaxation scheme is
close to one minute on a CX 7600. A carry-over of the two-dimensional
solution to three dimensions using line relaxation techniques could
multiply time and storage requirements by a factor of 30. Such a compu-
tation time would be unacceptably long for engineering design purposes.
Techniques suited to cylindrical problems in three dimensions will be
developed in this paper which require about four times the effort
necessary for a two-dimensional solution. This effort leads to a run
time of about three minutes on the 7600 which is considered to be suit-
able for engineering use.

I I .  THE TRANSONI C SMALL DI STURBANCE EQUATION

The approach used here to compute transonic flow is based on the
solution of the transonic small disturbance equation,

[1 - N2 - M2 (y + l ) $ 1$ 
~ rr ~ r~

h1 + •08 /r
2 = 0 (1)

which may be derived from the Euler equations applied to a slender body
with a pointed nose2. The solution of this equation is the potential ~from which velocities and pressures in the flow field may be obtained.
This is a non-linear partial differential equation of mixed elliptic-
hyperbolic type written in a cylindrical coordinate system (z ,r,e) as
shown in Figure 2. The free stream Mach number is given by M in this
equation and the ratio of specific heats (1.4 for air) is represented
by ‘sr . Boundary conditions are given on the surface and at infinity by:

= dR/dz
surface

and

= c*rcos(O) .

In these equations R is the radius of the surface and ~ is the angle of
attack of the projectile.

2. Jiolt Ashley and Mart en Landah i, Aerodj ~noinics of Wings and Bodies,
Addison-Wesley Publishing, Inc., Reachng, 14.4 (1965).
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In practic. it is more convenient to use a set of boundary
conditions in which all the important information appea r s in the body
surface equation, thus leaving the boundary condition at infini ty as.

This desired arrangement of the boundary conditions may be accomplished
by the transformation ,

• — v + a r c o s  (0)

v -~~~- a r c o s (0) . -

This transformation does not alter the differential equation that must
be solved. It does alter the boundary conditions, however , producing
the new set :

V - dR/dz - a cos (8)
r surface

and

The solution to equation (1) has been shown by Bailey3 to give
good results for the slender body case at zero angle of attack. This
equation has also been studied both numerically and analytically for
many years and it is simple enough that much valuabl e insight may be
gained from it.

III. FOURIER TRANSFORMATIONS

An examination of the closely related linear equation produced by
holding the coefficient of constant will demonstrate a technique

for simplifying the solution of the three-dimensional problem. The
equation that results fro. this linearization is

~~zz + rr r/ r  + •00/r 2 - 0

3. F. R. BaiZ.y1 ‘Ww#v rioa l Caloulation of Transonia F low About Slender
Bodies of Revolution,” NASA TN-P-6582, D o.mber 1971 .
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where ~ is the constant coefficient. This equation is of the form that
would be obtained fro. a strictly subsonic or supersonic problem in
which the Mach number is well away from one. It is not necessary to
resort to numerical techniques to solve this linearized equation.
Ordinary analysis may be applied. As the problem is periodic in 0 a
Fourier transformation is a logical step. Such a transformation results
when the potei~tial is expanded in a cosine series in 0, as given by,

• (z,r,8) •~\ ~
O (z,r) + ~ (z,r) cos (0) + ~2 (z,r) cos (20) .

A two-dimensional differential equation may then be obtained for each
coefficient ~~~ . Fortunately , because of the boundary conditions, only
two of these coefficients are non-zero. The net result is the trans-
formation of the original linear three-dimensional problem into a pair
of two-dimensional problems, given by,

~~zz + + F;°/r • 0

~~dR/dz ‘

surface

and

~~zz + F + - ~~,r
2 — o

— - 0 ,

surface

As the three dimensional problem has been transformed into two two-
• dimensional problems it will be about twice as difficult to solve the

three-dimensional problem as it is to solve a two-dimensional problem .
This represents a consi orable improvement over the factor of 30
mentioned in the Introduction.

Reyhnerk has published a three-dimensional solution of the full
potential equation. In his paper he observes that the solution is
closely approximated by a constant plus a cosine in the circumferential
direction. This result is not surprising in light of the above dis-
cussion. The solution is exactly a constant plus a cosine in the cir-
cumferential direction for the subsonic and for the supersonic
problems and is not far different for the transonic non-linear problem.

4. T. A. R.yhn.r, “Traneonic Po tentia l P low Around Arieynri.trio Inlets
and Bodies at Angie of Attack,” AIM Journa,~~ Vol. 15, No. 9,
S.pt*~I1b.r 19??, pp. 1299-1306. 
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The ease with which the linear problem may be solved in three
dimensions gives one hope that the transonic problem may be similarly
transformed. Fourier transform techniques cannot be carried over
directly to the non-linear transonic equation, however. A first require-
ment for the use of Fourier transform techniques is that the equation
to which they are applied must be linear. The transformation of the
non-linear term of equation (1) would yield a convolution that would
couple the resulting set of diff~rential equations. It is also
important to note that a second requirement for the use of Fourier
transforms is that the operator to which they are applied must be

• independent of the choice of where the 0 = 0 plane is located. That
is, the operator must have complete rotational symmetry in 0.

Fourier transform techniques can be applied indirectly to the
solution of the non-linear problem. An iterative approach may be
applied numerically to the solution of equation (I). In this approach
the derivatives with respect to z which occur in the non-linear term
are evaluated from an old iteration of the solution. The remaining
two-dimensional system in r and 0 is linear and is solved to obtain the
potential at the next iteration of the solution on a plane in r and 0.
The solution may be obtained in this manner for all of the planes
perpendicular to the z axis in the flow field. The process may then be
continued through many such iterations, evaluating the z derivatives
from the solution at the old iteration and obtaining the solution at
the new iteration from the resulting linear equations in r and 0. Such
a process, of course, may or may not converge. The linear problems
generated, however, are symmetrical in 9 and Fourier transform
techniques may be applied.

This iterative technique in which the potential is obtained for
planes cutting the body axis from known values of the z derivative
terms is in close harmony with the physical nature of the flow. An
examination of the shadowgraph shown in Figure 1 leaves one with a
clear image of the radial nature of the pattern of shocks about the -

•

body. The effect of a change in the body geometry is felt far out in
the flow field in a radial direction from the cause of the disturbance.
The effect in the longitudinal direction is not nearly as great.

One would expect to find this situation modeled in the differential
equation that is used to predict transonic flow. The derivative

term in equation (1), that couples the potential at any point to the
• potential at longitudinally neighboring points, is scaled by a small

coefficient, 1 - M~ - M2 (y + 1) •~. When the local Mach number is

one this coefficient is zero. Since the local Mach number is always - -
-

near one in transonic flow, this coefficient is always much less than
one. Near the body surface the term may be neglected entirely in -

•

regions away from corners and other discontinuities. The equation
that results when the non-linear term is dropped is called the inner
equation and ic given by,

11
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rr ~ r
hh l • •00/r2 — (1 (2)

There is no coupling in the longitudinal direction included in this
equation.

The radial propogation of physical influence helps to explain the
success of line relaxation schemes such as the one Bailey3 applied to
the solution of the two-dimensional cylindrical problem. The direction
of the implicit calculation in this solution is maintained in the radial
direction which corresponds to the direction of the major physical
coupling . It is also of advantage to make use of this physical coupling
in the three-dimensional solution of equation (1). This coupling may
be taken advantage of if the line relaxation scheme that Bailey used
in two dimensions is developed into a plane relaxation scheme in three
dimensions.

The implicit system of equations associated with line relaxation
is of tn -diagonal form and may be readily solved. The system of
equations associated with plane relaxation will be penta-diagonal in
form because of the added coupling between the equations around the
body. In such a system there will be non-zero elements on the main
diagonal and on four side diagonals. Such a system cannot be solved as
directly . A finite Fourier transformation, however, will reduce the
three-dimensional penta-diagonal system to a series of two-dimensional
tn -diagonal problems.

There is an additional advantage to the use of Fourier transforma-
tions. They make natural the use of spectral methods. In a spectral
method the potential is expanded in a cosine series,

• — + cos (0) + cos (28) + ... + cos (kO) +

The second partial derivative with respect to 9 is then,

= - cos (0) — 4~2 cos (20) - ... - k~ cos (kO) - ...

Since the coefficients of cos (kG) for k larger than 1 are very small 
S

in the transonic problem it is possible to evaluate the 0 derivative
with very few Fourier components. The necessity of keeping only a few
Fourier components implies that only a few grid points need be main-
tam ed in 8 , as will  be shown below. In practice no increase in
accuracy, of engineering significance, may be seen between the solu- •

tions obtained from grids of 4 and 8 points in the 0 direction. In the
linear case of low Mach number the coefficients for k larger than 1 are
zero and only two grid points are necessary. It would be necessary to
use at least 16 grid points to evaluate the second derivative of cos(S)
with the usual central difference formula.

12
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The Fourier transformations which are useful in the numerical
solution of equation (1) are finite. The finite Fourier transformation
of the potential may be written as:

N
[ E •

n exp (2trikn/N)] / i’1~
n~l

The ~~‘s are the transformed potential~ associated with the •~‘s givenat N equally spaced grid points on a circle around the body. There are

as many as there are +
n t 5. The potential may be obtained from the

by applying the inverse transformation:

.
n = ~ ~k exp (-2~rikn/N)] / ~4T

k= 1

Since it is possible to go backward and forward between the trans-
formed and untransformed forms of the potential, the finite Fourier
transformation can neither add to nor subtract from the information in
the equations. The transformation would be described in linear algebra
as a change of basis. It may be written as a matrix operator F whose
elements are:

= exp (2irikn)

The finite Fourier transformation, written in matrix form, is then
9. 9.

The transformed form of an operator 0 such as the one that will be
obtained from the transonic equation is given by,

F 0 F ’

• Fourier transform techniques are natural for the cylindrical
problem. As only a few Fourier terms are needed, the transformations
use little computer time and a fast solution algorithm is possible.

5 The problem that creates significant difficulty in the use of the
transform method arises in the need to stabilize the iterative process
used to solve the transonic problem. Stable schemes can be developed
as will be shown.

13
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IV. DIFFERENCI~ FORMULATION

The difference formulation used to solve the three-dimensional
cylindrical transonic problem utilizes Fourier transformations. The
algorithm is based on plane relaxation and a spectral method is used in
the 0 direction . Type dependent differencing, as developed by Murman
and Cole5, is also used. Central differences are used to evaluate the

derivatives throughout.

In the following, ~ wi ll be used to imply a difference operator of
the type described above. That is, 

~rr
4
~ 
wil l be used to represent the

central difference form for the second derivative of • in the rdirection. will imply the use of a central difference formula in

subsonic regions and the use of a backward difference formula In super-
sonic regions. Further, w ill imply a spectral evaluation of

Difference equations for the transonic problem then may he written
as:

+ 
~r~ ’r + A

00 $/r 2 
— (~%)

where A represents the non-linear coefficient I - N2 - M2 (y + 1) 
~~~

One such equation will exist for each grid point in the flow field.

The operator represented by the left hand side of this equation
meets all of the criterion necessary for the successful application of
Fourier transform techniques. It is both linear and symmetric in o.
An iterative plane relaxation procedure could be applied to the solution
of the system of equations of the form shown in equation (3). This
procedure could be carried forward by evaluating the right hand sides
of these equations from the values of the potential avai lable from the
last iteration of the solution , and by then solving the resulting
linear system for the potential at the next iteration of the solution.
Plane after plane of potentials could ho obtained in this manner
marching from a point upstream of the shell to a point downstream of
the shell until the potential for the entire flow field at the new
iteration was known. Unfortunately, the repetition of this process for
many iterations does not converge to a stable solution . In order to
stabilize the iterative process, however , any term which helps stability
may be added to either side of equation (I) if the term will disappear
when convergence is reached.

5. E. M. Ma~mrn and J. D. Colo, “C~1ou 1atic~ of 1’iw~o S t-.~ady T~~ ia~nt~’Plc ~s,” AIAA Journa l, Vol. 9, No. 1, January 1971 , pp. 1i4-1.~1.
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In a study of convergence it is convenient to consider the itera-
tive process to be a marching process through time. Time then forms a
fourth dimension in the problem and the marching process may be analyzed
sccordtngl”. Differences between potentials at two consecutive itera-
tions are i hen considered to be related to a derivative in time. On
convergenc~i, by definition, the solution has reached a steady state.
In a steady state all tine derivatives such as or mixed spatial and

time derivatives such as 0zt will disappear. Any combination of 0~ or
0zt terms may be added to either side of equation (1) if they will help

stabilize the iterative procedure. Ballhaus6 has discussed the effect
of 0zt terms as they appear in the time dependent transonic small

disturbance equation written in Cartesian coordinates. In the cylin-
drical problem it has been found necessary to apply a type dependent
stabilization process. The addition of a r,

~ 
term to the right hand

side of the equation at subsonic points and the addition of a

term to the right hand side of the equation at supersonic points has
been found to stabilize the iterative process. The coefficient r(r,z)
is a suitably chosen constant in 8.

A stable scheme to which Fourier transform techniques can be
applied may then be based on the difference equations given by:

~rr 
+ 
~r
+k + I~004/r

2 — ~~~ + rA,~~, (supersonic)

and (4)

Arr+ + ~~+/r + tt
08 4~/r2 — - A 4  + (subsonic)

In order to see explicitly how convergence is achieved it is necessary
to write out the right hand side of equations (4) in detail. The nota-
tion that will be used is as follows. The potential at the grid point
for which the equation is derived will be written as •. The potential
at neighboring points in the z direction will be written as or 4
for neighbors in the positive or negative z directions respectively.
$ will be used to represent the potential at the next nearest neighbor

grid point in the negative z direction. Potentials which are evaluated
at the last time step (iteration) will be marked with a ‘ . Equations
(4) then become:

8. Wiiii ~ n F. Ballhaue and Harvard Lcmax, “The Numerica l Simula tion
of Low Fr.equ.noy Uneteady Trana oni c Flow Fi a l4e,” L ture Notea in
Phyeio8., Vol. 35, pp. 57—63 (1975).
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~rr • + A 90 4/r 2 a -A ($-2$ +$_)/~~ + r(($-$) - (~~_ -

(supersonic)
and (5)

+ Ar$/r A00~ ’r2 — - A( $~ - 2~ + •_ )/A~ + r(, -
(subsonic)

r(z,r) a 2Max 0 ( X ) / A ~

The non-linear coeffici~nt A has not been written out. It Is always
central differenced using the old time step. The coefficient r is
dependent on the maximum value of A around the circle of grid points at
the current value of r and z. t~ gives grid separation.

Equations (5) have been written as they would appear for any evenly
spaced grid . The grid actually used was not evenly spaced. A slight
modification is necessary to write these equations for a varying grid.
This modification will not be presented here. In order to solve these
equations the r~ term is carried from the right hand side to the leftwhere it becomes part of the implicit system of equations which must
be solved . The remaining terms on the right hand side of equations (5)
may be evaluated from the solution for the old iteration or from the
recently acquired solution on the last plane for the new iteration .
The right hand side is thus a known driving term for the linear system
on the left hand side. An iterative process, as described above, may
then be employed .

Convergence has been found to be monotonic and convergence speed
may be increased by over-relaxation, as is used in the line over-
relaxation technique. Speed of convergence may be further increased
by use of a coarse longitudinal grid for the initial Iterations
followed by the use of a fine grid when the solution has partially
formed. By utilizing these techniques quite reasonable run times ,- on
the order of three minutes, have been achieved for three-dimensional
cases on fine grids.

V. DISCUSSION OF RESULTS

The results for computations of the surface pressure coefficient
for bodies with circular arc profiles can be seen in Figures 3 and 4.
Figure 3 shows a comparison of computed and wind tunnel 7 pressure coef-

~‘ . R. A. Tay lor and J. B. tloD evitt, “Pr eeeure Dietrihu ti~ n at T~ zn~~~i,
Speede for Parabol ic-Arc Bodies of Revolution Havina Fineness Ratios
of 10, 12, and 14,” NACA TN-4234 , March 1958.
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ficient along the surface of a 1/ 10 fineness ratio body at zero angle
of attack in a Mach number .99 free stream. The location of a shock
can be clearly seen just aft of the center of the body.

The solid line shows the results of computations for a body
generated by a perfect circular arc. The wind tunnel model, however,
was supported from the rear by a sting. The effect of the sting was
modeled by attaching a solid cylinder to the body at the location of
the sting. The corner at the juncture of the body and this cylinder
was faired to reduce the large pressure spike that would have formed
at a sharp corner. The resulting computed pressure coefficients are
shown by the dashed line in this figure. As the angle of attack is
zero in the case shown in Figure 3, the computation is two-dimensional.
This same case was computed by Bailey in his earlier two-dimensional
work3 and the results are identical.

Figure 4 shows a comparison of computed and wind tunnel8 pressures
for a slightly more slender body of fineness ratio 1/12. The Mach
number in this case was .90 which is too low to allow development of a
large supersonic region with strong shocks. The figure is presented to
show the result of a three-dimensional computation. For the results
shown , the sting was modeled in the same manner as discussed above.

The results presented in these two figures confirm the ability
of the three-dimensional code to predict surface pressures over smooth
bodies. There is little difference between the nose of a typical
artillery shell which is an ogive and the front portion of these
circular arc bodies. Artillery shell, however, often exhibit corners,
particularly at the junction between the ogive and cylinder portions
and between the cylinder portion and the boattail. Strong shocks are
formed by the collapse of supersonic regions which are generated by the
expansion of the flow over these corners when the shell is flown at a
slightly subsonic velocity (.8 < M < 1). As discussed in the intro-
duction, the flow pattern generated by the corner at the beginning of
the boattail is largely responsible for the critical behavior of the
overturning moment. Thus, the accurate treatment of corner flow is of
prime consideration.

The ability of the present theory to predict flow over a corner
can be seen in Figure 5. Figure 5 shows a comparison of computed
surface pressures to wind tunnel9 experiments for flow over a cone
cylinder model at Mach number 1.1. The theory shows reasonable

8. J .  B. McDevitt and R. A. Tay lor, “Force and Preasure Measurements
at Traneoni c Speede f or Severa l Bodies Having El l iptic~a l CrOSS
Sections,” NACA TN-4362, September 1958.

9. W. A. Page, “Experimental Study of the Equivalence of Transonic
Flow About Slender Cone-Cylinders of Circular and Ellip tic Cross
Section,” NACA TN-4233 , Apri l 1958.
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behavior near the corner of the cone and cyl inder sec tions. In order
to achieve those results it was necessary to use care in applying
boundary conditions at the body surface. An approach that is often
taken in the application of boundary conditions is to use solutions of
the simpler inner equation (2) to extrapolate the boundary conditions
from the body surface to the body axis or to some other convenient
location. In Bailey’s two dimensional paper3 the boundary conditions
were extrapolated to the axis where a series of sources and sinks were
placed . The source and sink strengths were obtained from the solution
to the inner equation (2).

This procedure is not feasible if accurate corner flow is to be
obtained. The equation, which is obtained by dropping the non-linear
term from equation (1), does not apply near corners where, in fact, the
non-linear term may be large close to the body surface. Boundary
conditions must be applied directly at the surface without extrapola-
t ion.

Additional improvement in the application of boundary conditions
for flow over corners may also be obtained as indicated below. The
usual boundary condition which Is applied at the body surface is given
by,

~ dR/dz
surface

where the left hand side Is the radial derivative of the potential
evaluated at the body surface and the right hand side is the slope of
the body surface. This is a first order approximation to the body
surface boundary condition . A second order formula is more appropriate
and is given by,

• a (I + $  )dR/dzr surface ~ surface

The first order formula works well as long as remains small in

comparison to 1. Near a corner may become large enough that it

produces a noticeable effect as seen in Figure 5. Because of the
iterative relaxation procedure used in solving the potential equation

may be obtained at an old iteration . The right hand side of the

second order formula may thus be evaluated . The effect of using a
finer grid spacing may also be seen in Figure 5. The grid in all cases
shown in this figure was made up of 64 points. In the case labeled
fine grid, these points were clustered so as to give twice the density
near the corner. Subsequent calculations have been carried out with
128 points so as to achieve this same fine density when more than one
corner is present on the body.
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It has been shown in the above discussion that the transonic
techniques that have been developed will predict flow over both smooth
bodies and bodies with corners. It should, therefore, be possible to
obtain the solution over a body that closely resembles an artillery
shell. The accuracy with which the shock locations may be predicted
for a projectile can be seen in Figure 6. The plot shown In this
figure gives the pressure distribution along the surface of a projectile
like body. Thi3 body differs from the M549 projectile shape in that
it has a sharp nose and no rotating band . The outline of an actual
f4549 projectile appears at the bottom of Figure 6. The expansion
locations and shock locations are marked with dashed and solid lines
respectively about this outline as taken from a shadowgraph 10 of the
projectile in flight at t4 • .91. There is a double shock pattern
associated with the collapse of each supersonic region as may be seen
along the outline . The second shock is due to the interaction of the
first shock and the viscous boundary layer. The boundary layer separa-
tes at the base of the first shock and reattaches at the base of the
second. Reasonable agreement between the shock locations seen in the
computed pressure distribution and the primary shock locations taken
from the shadowgraph are seen.

The secondary shock is an effect caused by the viscous boundary
layer which is not modeled in the inviscid computations. The presence
of the rotating band and the effect of the viscous boundary layer in
rounding the corner at the boattail are also not modeled In the compu-
tations. Aerodynamic coefficients computed for the projectile like
body are not, therefore, expected to be in exact agreement with the
aerodynamic coefficients for the actual projectile. The transonic
effects can , however, be computed and qualitatively correct behavior
can be predicted . The lift loading computed for the projectile shape
is plotted in Figure 7. This graph shows the normal force per unit
length plotted as a function of the position along the shell. It is
felt that the features of this curve, particularly the large downward
spike in the boattail region, give an accurate representation of the
aerodynamic forces on this body . Comparison of the pitching moment
coefficient computed for this body and range measurements11 of the
pitching moment for the M549 projectile are given as a function of
Mach number in Figure 8. The peak shown in the computed results falls
a few hundredths of a Mach number higher than the peak in the range
measurements and is not as pronounced.

The trend of design alterations may be predicted by the present
technique. The boattail on the Projectile shape discussed above was

10. Leonard C. ?4ao.4llis ter, U.S. Army Ballis t ic Resear ch Lal\,ra t( lr,,,
Aberdeen Proving Ground, Mary land , ehadc*~iraph taken in BRL
Traneoni c Rang..

11. Robert L. Nc-Coy, U.S.  Ax~ny Ba l l is t i c  Research LaI ’ ’rtztory , A)~srdean
Prc’~’ ing Ground , Mary land, pri vat e c~rrrunication.

19

5 - - -—-- - 5  - _ _ ~~ __ _~~~~~~~~~~~~~~~~ __ _ 5 . _ _ __
~~~~~~~~~~ -~~~~~~~ _ _



- .r~ ~~~—~- - --‘--~~~~~~~ - -—-~ - --—~~~ -~- - ~~~- --~~-~~~~~~~

shortened producing the results seen in Figure 9. The flow over the
boattail becomes fully supersonic at a lower Mach number for the
shortened tail and transonic effects due to the shocks on the boattail
thus disapp.ar at a lower Mach number. This causes the peak in the
pitching moment to appear at a lower Mach number.

VI . SU144ARY

In order to compute the aerodynamic coefficients for artillery
projectiles it has been necessary to resolve the shock patterns
associated with corner flows. This resolution is obtained by using
very fine grids and by using care in the application of boundary
conditions . A practica l computational algorithm has been developed
which is based on Fourier transformation techniques and which has been
used to solve the transonic small disturbance equation on a cylindrical
coordinate system in three dimensions. The ability of these methods
to accurately predict transonic f low about clean aerodynamic shapes
has been demonstrated by comparisons of the computations to experi-
mental data for circular arc and cone cylinder bodies. The techniques
have also been shown to predict the correct qualitative trends of Cma
vs Mach number for actual shell configurations. In order to achieve
improved agreement between computed and experimental aerodynamic
coefficients for actual shell, it will be necessary to include effects
of the viscous boundary layer and to include a model for the rotating
band.
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Figure 1. Spark Shadowgraph of a Typical Projectile at
Critical Mach Number , M = 0.926, -
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Figure 2. Coordinate System

21

_ _ _ _  
_ _  

a
_ _ _ _ _ _ _ _ _  - 

-
~~~~

_a_. ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
—

5-



5-- - - 5—.-. ,- —---5.-.—. 5—.- —-——— 5-. - --5,— -—---.—-- ~- 5— - 5 .  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5-

__ ,___—,

~flO CIRCULAR ARC
M’ .99 ~~~~~~~ØS

• UPIRIMINT
— NO STING 1 THEORY

- .2 - — — W I T H  STING I

~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _TTI ~~~~~~~~~~~~~ t—i -- -

FIgure 3. Comparison of Calculated Pressure Coefficients With Wind
Tunnel Da ta for a Fineness Ratio 1/10 Circular Arc Body ,
M~~~0.99
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Figure 4. ComparIson of Calculated Pressure Coefficients Wi th Wind
Tunnel Data for a Fineness Ratio 1/12 Circular Arc Body
at Angle of Attack , ~ 4° , M a 0.90
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Figure 5. ComparIson of Calculated Pressure Coefficient With Wind
Tunnel Data for a 70 Half Angle Cone Cylinder , M 0.99

-.6 - M549 PROJECTILE
MACH NO. • .91

FIgure 6. Calculated Surface Pressure Coefficient
on an 14549 Projectile Shape
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Figure 7. Computed Normal Force Loading Along
Modeled 14549 ProjectIle Shape
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Figure 8. Comparison of Computed Pitching Moment
With Range Data for an 14549 Projectile
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LIST OF SYMBOLS

C,~ pitching moment coefficient about center of mass

C~ pressure coefficient

f. matrix element of F

P Fourier transformation matrix

k index associated with Fourier components (wave number)

N Mach number

n index associated with grid location in 0 direction

N total number of grid points in 0 direction

o arbitrary matrix operator

r radial coordinate

R radius of body

z longitudinal coordinate

— 
a angle of attack

y ratio of specific heats (1.4)

F coefficient of time derivative term

difference operator

~.N lift loading

O circumferential angular coordinate

A non-linear coefficient

transformed potential

. ~k k ’th Fourier component

perturbation velocity potential
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